분류 전체보기 (2)
[Kaggle] 초보자를 위한 캐글 튜토리얼 by Hassan Amin

Introduction(소개)

Here's list of data science tutorials, that I worked on to help train our team in data science. This also shows you the path that you may follow to learn data science.

As you may see, we got started with Python, jumped into pre-processing and exploratory data analysis, learned a number of machine learning and deep learning techniques and explored a number of problems.

다음은 데이터 과학에 대한 팀 교육을 돕기 위해 작업 한 데이터 과학 자습서 목록입니다. 이것은 또한 데이터 과학을 배우기 위해 따라야 할 길을 보여줍니다.

아시다시피, 우리는 파이썬을 시작했고, 전처리 및 탐색 적 데이터 분석에 뛰어 들었고, 많은 머신 러닝과 딥 러닝 기술을 배우고, 많은 문제를 탐구했습니다.

Note

Don't forget to like, share and upvote any tutorial that you may benefit from. Feel free to leave your thoughts/opinion in comments. This is only a fraction of the stuff, more will come in future.

혜택을 받을 수있는 자습서를 좋아하고 공유하고 찬성하는 것을 잊지 마십시오. 의견이나 의견을 남겨주세요. 이것은 단지 일부일 뿐이며 앞으로 더 많이 올 것입니다.

파이썬 시작하기

https://www.kaggle.com/hassanamin/python-getting-started-training

https://www.kaggle.com/hassanamin/python-session-3

전처리 및 탐색 데이터 분석 탐색

https://www.kaggle.com/hassanamin/exploring-preprocessing-steps

https://www.kaggle.com/hassanamin/exploratory-data-analysis-aka-eda-on-red-wine-data

https://www.kaggle.com/hassanamin/principal-component-analysis-with-code-examples

Machine Learning 기본

https://www.kaggle.com/hassanamin/kmeans-clustering-seed-dataset

자연어 처리(Natural Language Processing)

https://www.kaggle.com/hassanamin/glove-based-text-classification

https://www.kaggle.com/hassanamin/nlp-with-deep-learning-and-embedding-layer

PySpark DataFrames

https://www.kaggle.com/hassanamin/pyspark-dataframes

SpaCy

https://www.kaggle.com/hassanamin/learning-spacy-basics

감성분석(Sentiment Analysis)

https://www.kaggle.com/hassanamin/sentiment-analysis-using-nltk

https://www.kaggle.com/hassanamin/sentiment-analysis-using-classification-approach/

가짜 뉴스 분류(Fake News Classification)

https://www.kaggle.com/hassanamin/fake-news-classifier

https://www.kaggle.com/hassanamin/fake-news-classifier-using-glove

https://www.kaggle.com/hassanamin/fake-news-classifier-with-deep-learning-embedding

컴퓨터 시각 인식(Computer Vision)

https://www.kaggle.com/hassanamin/keras-neural-network-for-digit-recognition

https://www.kaggle.com/hassanamin/exploring-cnn-on-mnist

How to start Pyspark in Kaggle ?

https://www.kaggle.com/hassanamin/pyspark-dataframes

Datasets

# ATIS Airline Travel Information System(ATIS Intent Classification Dataset)

https://www.kaggle.com/hassanamin/atis-airlinetravelinformationsystem

Iris Dataset

https://www.kaggle.com/hassanamin/iris-dataset

https://www.kaggle.com/hassanamin/customer-churn

Reference

https://www.linkedin.com/pulse/learning-data-science-dr-syed-hassan-amin/

Note

Please share, upvote and comment to help me create and share more content for the community.
Thank you all.

커뮤니티의 더 많은 컨텐츠를 작성하고 공유 할 수 있도록 공유, 투표 및 의견을 보내주십시오.
모두 감사합니다.

 

출처 : https://www.kaggle.com/getting-started/125201

'Data Science > Kaggle' 카테고리의 다른 글

[Kaggle] 캐글 커리큘럼 (by. 이유한님)  (0) 2019.12.30
  Comments,     Trackbacks
[Kaggle] 캐글 커리큘럼 (by. 이유한님)

kaggle.

Kaggle 스터디를 위한 커리큘럼입니다.
커리큘럼 참여에 있어 "처음부터 끝까지 3번씩 따라쓰고 이해하는 것"이 중요합니다.
그리고 이 과정을 통해 어떠한 Data인지, Project는 어떤 것인지, 어떤 학습이 되었는지
이해하는 것 또한 중요합니다.

이유한님께서 캐글 스터디 전용 커리큘럼을 정리해주셨다고 해서 사이트 또한 함께 공유합니다.

https://kaggle-kr.tistory.com/32

약간의 변경을 했으니, 커리큘럼을 필사적으로 필사하여 따라가봅시다. 

1. 표 데이터(Tabular data)

1-1. 표를 이용한 이진 분류(Binary classification)

1st level. Titanic: Machine Learning from Disaster

 

Titanic: Machine Learning from Disaster

Start here! Predict survival on the Titanic and get familiar with ML basics

www.kaggle.com

2nd level. Porto Seguro’s Safe Driver Prediction

 

Porto Seguro’s Safe Driver Prediction

Predict if a driver will file an insurance claim next year.

www.kaggle.com

3rd level. Home Credit Default Risk

 

Home Credit Default Risk

Can you predict how capable each applicant is of repaying a loan?

www.kaggle.com

1-2. 표를 이용한 다중 분류(Multi-class classification)

1st level. Costa Rican Household Poverty Level Prediction

 

Costa Rican Household Poverty Level Prediction

Can you identify which households have the highest need for social welfare assistance?

www.kaggle.com

1-3. 표를 이용한 회귀(Regression)

1st level. New York City Taxi Trip Duration

 

New York City Taxi Trip Duration

Share code and data to improve ride time predictions

www.kaggle.com

2nd level. Zillow Prize: Zillow’s Home Value Prediction (Zestimate)

 

Zillow Prize: Zillow’s Home Value Prediction (Zestimate)

Can you improve the algorithm that changed the world of real estate?

www.kaggle.com

2. 이미지 데이터(Image classification)

2-1. 이미지를 이용한 이진 분류(Binary classification)

1st level. Statoil/C-CORE Iceberg Classifier Challenge

 

Statoil/C-CORE Iceberg Classifier Challenge

Ship or iceberg, can you decide from space?

www.kaggle.com

2-2. 이미지를 이용한 다중 분류(Multi-class classification)

1st level. TensorFlow Speech Recognition Challenge

 

TensorFlow Speech Recognition Challenge

Can you build an algorithm that understands simple speech commands?

www.kaggle.com

3. 자연어 처리(Natural language processing)

1st level. Spooky Author Identification

 

Spooky Author Identification

Share code and discuss insights to identify horror authors from their writings

www.kaggle.com

2nd level. Mercari Price Suggestion Challenge

 

Mercari Price Suggestion Challenge

Can you automatically suggest product prices to online sellers?

www.kaggle.com

3rd level. Toxic Comment Classification Challenge

 

Toxic Comment Classification Challenge

Identify and classify toxic online comments

www.kaggle.com

4. 딥러닝을 이용한 객체 분할(Object segmentation)

1st level. 2018 Data Science Bowl

 

2018 Data Science Bowl

Find the nuclei in divergent images to advance medical discovery

www.kaggle.com

5. 기타 : 이상 검출(anomaly detection), 시각화(visualization)

1st level. Credit Card Fraud Detection

 

Credit Card Fraud Detection

Anonymized credit card transactions labeled as fraudulent or genuine

www.kaggle.com

2nd level. Kaggle Machine Learning & Data Science Survey 2017

 

2017 Kaggle ML & DS Survey

A big picture view of the state of data science and machine learning.

www.kaggle.com

  Comments,     Trackbacks